

Design and Development of Piezoelectric Actuators and Motors at Garman Systems

Prepared by:

Garman Systems inc.

2401 21st. Avenue South

Nashville TN 37212

Resonant (Ultrasonic) Motors

- ▲ Piezoelectrics generate an elliptic motion on the surface of the stator.
- A rotor/slider is pressed to the stator.
- A Because of the difference in time constants, the rotor is contacted intermittently.
- A The slider is driven by the tangential motion of the ellipse.
- ▲ The force is determined by friction and the normal component of the ellipse.
- ▶ Velocity and direction are controlled by phase or voltage.

GSi Motor Concepts

- Inchworm
 - Designed in ability to operate at high frequency w/o wear
 - Uses high stroke piezo clamping devices to compensate for wear and tolerances
- Stick/Slip Stepper Motor (modified inertial stepper)
 - Kinetic Static friction drive
- Hybrid transducer ultrasonic motor (HTUM)
 - Designed with micro-positioning capability

The need for amplification

- A Piezoelectric stacks have high force, high resonance frequency, and high power density, but very small stroke
 - The stacks have a blocked force of 850 N and a resonance frequency of 7 kHz
 - The stacks can produce strains of 0.1%
- ↑ The segment requires 100µm of piston motion, this would necessitate a 100mm tall stack
- Amplification flexure mechanisms can increase the motion of the stack to the required level

Optimal Flexure Orientation

- When input force is applied, flexure is put in:
 - Case 1. Shear
 - Case 2. Compression
 - Case 3. Tension

•

• Through an iterative process, Case 3 has been proven to be most efficient for our flexure mechanisms

Flexure-Stack Mechanical Interface

- Piezo stacks work best when subjected to compressive loads applied vertically to the center of the stack
- ▲ Loads applied off-center can damage the stack
- A steel sphere provides an ideal interface
 - The sphere keeps loads applied on the center axis of the stack
 - The sphere is not affected by small surface variations where the stack interfaces the flexure

Flat Plate Mechanism

- The detail shown is cut with a wire EDM machine
- Critical dimensions:
- Height: 45.5 mm
- Width: 30 mm
- Thickness: 5 mm

Kinematic Analysis

 The linkages are considered to be rigid bodies for kinematic analysis

• Stages 1 and 2 are cantilevered beams

• Stage 2 contains a four bar parallel linkage, to insure vertical motion

• The ideal kinematic amplification factor of the flat plate mechanism is 12.7

BOA Mechanism

- The mechanism is cut from a single piece of steel using wire EDM
- The output displacement is controlled by the expansion of the piezo stack
- Output force is dependent on the SMA band and the stiffness of the flexure
- Critical dimensions:

u Length: 27 mm

u Height: 11 mm

Depth: 5 mm

Kinematic Analysis

- The linkages are considered to be rigid bodies for kinematic analysis
- The equation governing the ideal output is:

$$dy = \frac{x}{y} dx$$

The kinematic amplification factor is 9X for the configuration shown

BOA Inchworm (in channel)

- ▲ Use BOA type actuator to get clamping motion
 - Compact clamping actuator with minimal non-active material
 - Long stroke of BOA allows compensation for manufacturing tolerance and thermal expansion/contraction
- ▲ Design offers limited ability to make electrical or mechanical adjustments

BOA Inchworm (on shaft)

- A Pairs of BOA type actuators mounted around a shaft
 - Each pair of BOAs connected with top and bottom yokes
 - Adjustable foot used to compensate for manufacturing tolerances and thermal expansion/contraction
- ▲ Longer extension stacks yield larger step sizes and greater motor speed

GSi Differential Stroke Inchworm Motor

▲ Eliminate assembly tolerance issue

- preload a "stator" to a shaft
- rely on the difference between the extension and contraction of stack actuators
- wear is automatically compensated for
- can be run at high frequency

▲ Use shear wafers for output

Piezoelectric Shear Wafer

▲ Advantages of shear wafers

- High positive <u>and</u> negative voltage limits
 ▲ Limited by the dielectric breakdown in both directions
- Does not depole easily, minimal aging.
- u Can be stacked.

Scalability Considerations for Inchworm Motors

▲ Tolerance and assembly

- Static displacement of a piezo-actuator is used for clamping and releasing
- U Dimensional tolerances must be less than the maximum stroke of the piezo-actuator
 - ▲ The slider/clamp interface must be "smooth" in order to avoid stalling
- Lever arm stoke amplification mechanisms have be used to address these limitations on miniaturization

▲ Wear

- u Operation well below resonance minimizes wear
 - A higher frequency operation introduces dynamics of the clamping and extension mechanisms and increases wear
 - A Small motors can be operated at high frequency with out exciting motor dynamics
- Differential stroke compensates for wear through preload

Stick/Slip Stepper - Operating Principle

- A Piezo shear wafers operate in sequence shown
- ▲ Single leg moves because kinetic friction is less than holding force of other legs (kinetic < static)
- A Precision micro-positioning accomplished by activating all legs together
- A Shear wafers can be stacked to improve speed at the cost of force (displacement per cycle increases)

Stick/Slip Stepper Motor

Stick/Slip Stepper Design Issues

- Contact uniformity is critical
 - u can be addressed through the use of a compliant backing
- ▲ Amplifier slew rate
 - high slew rate is required to ensure that the feet break into kinetic friction
- Contact material choice is critical
 - u high static friction coefficient & low kinetic friction coefficient
- ▲ Can be made completely non-magnetic
 - u ceramic or plastic body, run on a ceramic shaft
- ▲ Simple design makes this motor very scaleable
- △ Potentially low cost, versatile linear motor
 - u provided that further development research proves successful

Pharaoh's Motor

- ▲ Utilizes strain in an elastic medium to store energy.
- Force and displacement of each individual actuator accumulate to provide smooth motion for the motor.
- Force required from individual actuator is much less than force output of the motor.

Pharaoh's Motor stepping sequence

Pharaoh's Motor

Feasibility study of one Pharaoh's motor 'foot'

Hybrid Transducer (HTUM)

- Elliptic motion is generated by two orthogonal piezo-vibrators
- Operate at resonance of output, U
- Separation of elliptic motion into two controllable components allows performance and design flexibility
- Easier to miniaturize
- Can tune both resonance frequencies to get best performance

Shear Stack HTUM

- ▲ Elliptical motion is created using shear wafers, and a linear stack actuator, running 90° out of phase
 - The linear stack is $5 \times 5 \times 5$ mm, capable of displacing 4μ m
 - 4 shear wafers are hand stacked
- ▲ The contact foot is covered with Kapton film to prevent ultrasonic welding
- A Resonant frequencies above 20 kHz because of its low mass

Modified Shear Stack HTUM

- ▲ The added mass that the shear wafers move lowers the resonant frequency
- ▲ The linear stack actuator is 10x5x5 mm, capable of displacing 9 µm
- ▲ Two shear stacks provide horizontal motion
- The resonant frequency is lower than 20 kHz, the maximum frequency that can be achieved with the quadrature oscillator chip

Modified Shear Stack HTUM: Test Results

▲ The stator was placed on a translation stage and pushed against a slider mounted on compression springs for testing

A Results:

Frequency: 18.1 kHz

Shear stack input: 92 Vpp

Linear stack input: 39 Vpp

u Static holding force: 4.4 N

Load (N)	Speed (mm/s)
Unloaded	32
0.49	22
0.98	12

▲ Increased performance can be achieved by operating multiple stators in parallel

Orthogonal Stack HTUM

- A Operation of the stack actuators with sine waves 90° out of phase creates elliptical motion at the contact point
 - The input signal is generated by a quadrature oscillator chip
- ↑ The stack actuators can achieve a 9µm displacement with a voltage input of 150 Vpp
- ▲ The stack actuators are held in place using super-elastic Nitinol

BOA HTUM

- ▲ The principle of operation is the same as in the orthogonal stack HTUM, with the addition of the BOA mechanism
- ▲ The BOA mechanism provides amplification, increasing speed and load carrying capability
 - The BOA mechanism increases the stepsize of the motor
 - u Steel BOAs are used for increased stiffness
 - The BOAs are preloaded with superelastic Nitinol
- A Because of the amplification, the resonant frequency is much lower than with the other HTUMs
- ↑ The BOA HTUM is run as the orthogonal stack motor with two sine waves 90° out of phase

BOA HTUM: Test Results

▲ The BOA HTUM is run by advancing the motor with a translation stage to contact a slider mounted on compression springs

A Results:

Frequency: 1kHz

u Input: 80 Vpp

Static holding force: 9.8 N

<u>Load (N)</u>	<u>Speed</u>
Unloaded	13
0.49	10
1.47	3.7
2.45	2.2

GSi HTUM Future Development Issues

- ▲ The motors operate best at resonance, but the frequency of the resonance changes with the motor normal force, temperature, and operating voltage
- Accurate analysis of the movement of the contact point of the stator and the slider requires a measurement system such as a laser vibrometer
- A higher frequency quadrature oscillator will be needed for miniaturization
- ▲ The HTUMs can operate with multiple stators
- ▲ The prototypes built show potential for several different designs

Summary

- ▲ Garman Systems has diverse experience in piezoceramic based actuators and motors
 - Axial and transverse flexure based actuators
 - Linear and rotary inchworm designs
 - Stick/slip motor designs
 - u HTUM designs
- ↑ The Pharaoh's motor represents a novel piezoelectric drive mechanism
 - work in progress